
Industry Paper: Autofunk, a fast and scalable framework
for building formal models from production systems.

Sébastien Salva
LIMOS - UMR CNRS 6158
Auvergne University, France

sebastien.salva@udamail.fr

William Durand
Manufacture Francaise des

Pneumatiques Michelin, France
william.durand@fr.michelin.com

ABSTRACT
This paper proposes a model inference framework for pro-
duction systems distributed over multiple devices exchang-
ing thousands of events. Building models for such systems
and keeping them up to date is time consuming and expen-
sive, thus not adequately taken care of. Our framework,
called Autofunk and designed with the collaboration of our
industrial partner Michelin, combines formal model-driven
engineering and expert systems to infer formal models that
can be used to perform analyses, e.g. test case generation,
or help diagnose faults in production by highlighting faulty
behaviours. Given a large set of production events, we infer
exact models that only capture the functional behaviours of
a system under analysis. In this paper, we introduce and
evaluate our framework on a real Michelin manufacturing
system, showing that it can be used in practice.

Keywords
Model inference, STS, expert system, production system,
event-driven system.

1. INTRODUCTION
Models are essential while working on the design of com-
plex systems to build reliable implementations. But, they
are also particularly useful when systems reach maintenance
cycle, easing comprehension of the overall design and de-
scribing how these systems work under the hood. This is
important because people who are responsible for maintain-
ing or improving systems are most likely not the same who
designed and built them. It is nearly impossible for one per-
son to know all the details related to a particular system,
hence the need for creating and maintaining models.

In the industry, building models for production systems, i.e.
event-driven systems that run in production environments
and are distributed over several devices and sensors, is fre-
quent since these are valuable in many situations like test-
ing and fault diagnosis for instance. Models may have been

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DEBS’15, June 29 - July 3, 2015, OSLO, Norway.
Copyright 2015 ACM 978-1-4503-3286-6/15/06. . . $15.00.
DOI: http://dx.doi.org/10.1145/2675743.2771876

written as storyboards or with languages such as the Unified
Modelling Language (UML) or even more formal languages.
Usually, these models are designed when brand-new systems
are built. It has been pointed out by our industrial partner
that production systems have a life span of many years, up
to 20 years, and are often incrementally updated, but not
their corresponding models. This leads to a major issue
which is to keep these models up to date and synchronised
with the respective systems. This is a common problem with
documentation in general, and it often implies rather under-
specified or not documented systems that no one wants to
maintain because of lack of understanding.

In this paper, we focus on this problem for production sys-
tems that exchange thousands of events a day. Model infer-
ence, a.k.a. model learning or model reverse-engineering, is
a recent research field that addresses this issue. Models are
built from documentation or execution traces (sequences of
observed events). Several approaches have been proposed
for different types of systems, usually for GUI applications,
e.g. desktop or mobile applications. However, we noticed
that these approaches are not tailored to support produc-
tion systems. From the literature, we deduced the following
key observations:

• model inference approaches give approximate models
capturing the behaviours of a system and more. In our
context, we want exact models that could be used for
regression test case generation and fault diagnosis,

• most of these approaches perform active testing on sys-
tems to learn models. Applying active testing on run-
ning systems is not possible since these must not be
disrupted,

• production systems exchange thousands and thousands
of events a day. Most of the model inference approaches
cannot take such a huge amount of information to build
models.

Based on these observations, we propose a pragmatic model
inference approach that aims at building formal models de-
scribing functional behaviours of a system. Our goal is to
quickly build exact models from large amounts of produc-
tion events. Execution speed takes an important place for
building up to date models. Such models could also be used
for diagnosis every time an issue would be experienced in
production. The strong originality of our approach lies in

the combination of two domains for model inference: model-
driven engineering and expert systems. We consider formal
models and their definitions to infer models by means of dif-
ferent transformations. But we also take into consideration
the knowledge of human experts captured by expert sys-
tems. Intuitively, our proposal emerges from the following
idea: a human expert, who is able to conceive specifications,
is also able to diagnose the behaviours of the corresponding
implementation by reading and interpreting its events. His
knowledge could then be formalised and exploited to auto-
matically infer models. A part of our approach is based upon
this notion of knowledge implemented with inference rules.

The paper is structured as follows: Section 2 gives some
research directions considered in model inference and ex-
plains our choices regarding our design. Section 3 presents
an overview of the framework of our approach, called Auto-
funk. This work has been conducted in the context of pro-
duction systems for one of the world’s leading tire manu-
facturer Michelin. Therefore, we describe this context, its
assumptions, and a case study. We give the theoretical as-
pects of Autofunk in Section 4, and an empirical evaluation
in Section 5. We conclude in Section 6.

2. RELATED WORK
Several papers dealing with model generation approaches
were issued in the last decade. We present here some of
them related to our work, and introduce some key observa-
tions. We only consider the approaches that infer models
by observing the application behaviours at runtime, even
though other papers, e.g. [13], propose to build models from
documentation.

White-box techniques. Many works were proposed to
infer specifications from source code or APIs, e.g. [12, 11].
Specifications are inferred in [11] from correct method call
sequences on multiple related objects. The approach prepro-
cesses method traces to identify small sets of related objects
and method calls which can be analysed separately. The
approach was implemented in a tool which supports more
than 240 million runtime events. Other methods [3, 5] focus
on mobile and web applications. They rely upon concolic
testing to explore symbolic execution paths of an applica-
tion and to detect bugs. These white-box approaches the-
oretically offer good code coverage. However, the number
of paths being explored concretely is limited to short paths
only. Furthermore, the constraints must not be too complex
for being solved. As a consequence, the code coverage of
these approaches may be lower in practice, and models tend
to be too detailed, thus hard to read.

Black-box automatic techniques. Many other methods
[9, 10] were proposed to build models from event-driven ap-
plications seen as black-boxes, e.g. desktop, web and more
recently mobile applications. Such applications have GUIs
to interact with users and which respond to user input se-
quences. Automatic testing methods are applied to exper-
iment such applications through their GUIs to learn mod-
els. For instance, Memon et al. [9] introduced the tool
GUITAR for scanning desktop applications. This tool pro-
duces event flow graphs and trees showing the GUI execu-
tion behaviours. The tool Crawljax [10], which is specialised
in AJAX applications, produces state machine models to

capture the changes of DOM structures of web documents
by means of events (click, mouseover, etc.). To prevent a
state space explosion, these approaches [9, 2] require state-
abstractions specified by users, and given in a high level of
abstraction. This decision is particularly suitable for com-
prehension aid, but these models often lack information for
test case generation. In contrast, other approaches try to
reduce models on the fly. The algorithm introduced in [10]
reduces the model size by concatenating identical states of
the model under construction. But this cannot be gener-
ically applied on all applications, and a state abstraction
definition must be manually given.

Active learning. The L∗ algorithm [4] is still widely con-
sidered with active learning methods for generating finite
state machines. The learning algorithm is used in conjunc-
tion with a testing approach to learn models, and to guide
the generation of user input sequences based on the model.
The testing engine aims at interacting with the application
under test to discover new application states, and to build
a model accordingly. If an input sequence contradicts the
learned model, the learning algorithm rebuilds a new model
that meets all the previous scenarios. This approach has
successfully been applied to various domains from network
protocol inference to mobile applications [8, 6].

Based on these works, we concluded that active methods
cannot be applied on production systems. In our context,
we only assume having a set of events passively collected,
i.e. collected without disrupting the system. Furthermore,
the event set may be vast. We observed that most of the
previous methods are not tailored for supporting large scale
systems and thus millions of events. Only a few of them, e.g.
[11], can take huge event sets as input and still infer models
quickly. Likewise, the previous techniques often leave aside
the notion of correctness regarding the learned models, i.e.
whether these models only express the observed behaviours
while testing one or more behaviours. The approaches [8, 6]
based upon the L∗ learning algorithm [4] do not aim at yield-
ing exact models. The others use abstraction mechanisms to
reduce model sizes. For comprehension aid, an exact model
is not mandatory but the model correctness is extremely im-
portant if the model is later used for analysis purpose. In
the case of production systems, it is highly probable that
executing incorrect test cases can raise false positives, and
it may even lead to severe damages on the devices.

That is why we propose a framework that aims at inferring
models from collected events as in [11], but similarities end
here. We focus on exact and formal model generation, us-
ing expert systems and inference rules to emulate human
knowledge, and transition systems to embrace formal tools.

3. OVERVIEW
3.1 Context and assumptions
Michelin is a worldwide tire manufacturer and designs mos
of its factories, production systems, and software by itself.
Like many other industrial companies, Michelin follows the
Computer Integrated Manufacturing (CIM) approach, using
computers and software to control the entire manufacturing
process. In this paper, we focus on the Level 2 of the CIM
approach, i.e. all the applications that monitor and control
several production devices and points, i.e. locations where a

production line branches into multiple lines, in a workshop.
In a factory, there are different workshops for each step of
the tire building process. At a workshop level, we observe
a continuous stream of products from specific entry points
to a finite set of exit points, i.e. where products go to reach
the next step of the manufacturing process, and disappear of
the workshop frame in the meantime. Millions of production
events are exchanged among the industrial devices of the
same workshop every day, allowing some factories to build
over 30,000 tires a day.

Although there is a finite number of applications, each has
different versions deployed in factories all over the world,
potentially highlighting even more different behaviours and
features. Even if a lot of efforts are put into standardiz-
ing applications and development processes, different pro-
gramming languages and different frameworks are used by
development teams, making difficult to focus on a single
technology. Last but not least, the average lifetime of these
applications is 20 years. This set is large and too disparate
to apply conventional testing techniques, however most of
the applications exchange events using dedicated custom in-
ternal protocols.

Our industrial partner needs a safe way to infer up to date
models, independent of the underlying technical details, and
without having to rely on any existing documentation. Ad-
ditionally, Michelin is interested in building regression test
suites to decrease the time required to deploy or upgrade sys-
tems. We came up to the conclusion that, in order to target
the largest part of all Michelin’s Level 2 applications, taking
advantage of the production events exchanged among all de-
vices would be the best solution, as it would not be tied to
any programming language or framework, and these events
contain all information needed to understand how a whole
industrial system behaves in production. All these events
are collected synchronously through a (centralised) logging
system. Such a system logs all events with respect to their
order, and does not miss any event. From these, we chose
not to use extrapolation techniques to infer models, meaning
our proposal generates exact models, exclusively describing
what really happens in production.

This context leads to some assumptions that have been con-
sidered to design our framework:

• Black-box systems: production systems are seen as
black-boxes from which a large set of production events
can be passively collected. Such systems are compound
of production lines fragmented into several devices and
sensors. Hence, a production system can have several
entry and exit points. In this paper, we denote such a
system with Sua (System under analysis),

• Production events: an event of the form a(α) must
include a distinctive label a along with a parameter
assignment α. Two events a(α1) and a(α2) having
the same label a must own assignments over the same
parameter set. The events are ordered and processed
with respect to this order,

• Traces identification: traces are sequences of events
a1(α1)...an(αn). A trace is identified by a specific pa-
rameter that is included in all event assignments of the

trace. In this paper, this identifier is denoted with pid
and identifies products, e.g. tires at Michelin. Besides
this, event assignments include a timestamp to sort
them into traces.

3.2 Framework overview
In this section, we introduce our framework called Autofunk
whose main architecture is depicted in Figure 1. This frame-
work contains different modules (in grey in the figure): four
modules are dedicated to build models, and an optional one
can be used to derive more abstract and readable models.

We consider Symbolic Transition Systems (STSs) as mod-
els for representing industrial system behaviours. STSs are
state machines incorporating actions (i.e. events in this con-
text), labelled on transitions, that show what can be given
to and observed on the system. In addition, actions are
tied to an explicit notion of data. The innovation of this
framework lies in the combination of the notion of expert
systems with the STS formalism. Intuitively, the STS repre-
sentation, operators and transformations, can be expressed
with deduction rules. On the other hand, the knowledge
of a human expert of a system can be transcribed with in-
ference rules following the pattern: When condition, Then
action(s). Autofunk combines both domains in such a way
that each model modification can be expressed and imple-
mented with a rule. As a consequence, the data collections
handled by Autofunk are always expressed with knowledge
bases (Events, Actions, Traces, STS, etc.) on which rules
are applied to infer models. Given a system Sua and a set
of production events, Autofunk builds exact models, i.e. the
traces of a model S are included in the traces of Sua.

Figure 1: Overview of Autofunk

To explain how Autofunk works, we consider a case study
based upon the example of Figure 2. It depicts simplified
production events similar to those extracted from Michelin’s
logging system. INFO, 7011 and 17021 are labels that are
accompanied with assignments of variables e.g. nsys, with
indicates an industrial device number and point which gives
the product position. With real events, there are around 20
parameters. Such a format is specific to Michelin but other

1 17−Jun−2014 2 3 : 2 9 : 5 9 . 0 0 | INFO |New F i l e
2

3 17−Jun−2014 23 : 2 9 : 5 9 . 5 0 |17 011 |MSG IN [nsys : 1]
[nsec : 8] [po int : 4] [pid : 1]

4

5 17−Jun−2014 23 : 2 9 : 5 9 . 6 1 |17 021 |MSGOUT [nsys : 1]
[nsec : 8] [po int : 4] [tpo in t : 8] [pid : 1]

6

7 17−Jun−2014 23 : 2 9 : 5 9 . 7 0 |17 011 |MSG IN [nsys : 1]
[nsec : 8] [po int : 4] [pid : 2]

8

9 17−Jun−2014 23 : 2 9 : 5 9 . 9 2 |17 021 |MSGOUT [nsys : 1]
[nsec : 8] [po int : 4] [tpo in t : 8] [pid : 2]

Figure 2: Production events

Traces(Sua) = {(17011(nsys := 1, nsec := 8, point :=
4, pid := 1) 17021(nsys := 1, nsec := 8, point :=
4, tpoint := 8, pid := 1)), (17011(nsys := 1, nsec :=
8, point := 4, pid := 2) 17021(nsys := 1, nsec := 8, point :=
4, tpoint := 8, pid := 2))}

Figure 3: Initial trace set

kinds of events could be considered by updating the first
module of Autofunk.

3.2.1 Production events and traces
Autofunk takes production events as input from a system
under analysis Sua. These are formatted no matter their
initial source, so that it is possible to use data from different
providers. We obtain a set of events of the form a(α) with
a a label, and α a parameter assignment. In the rest of the
paper, we call these formatted events, valued events.

Some of these valued events may be irrelevant. For instance,
some events may capture logging information and are not
part of the functioning of the system. In Figure 2, the event
having the type INFO belongs to this category and can be
removed. Filtering is achieved by an expert system and
inference rules. Indeed, a human expert knows which events
should be filtered out, and inference rules offer a natural way
to express his knowledge. On top of that, expert systems
also offer fast processing in this situation.

The remaining valued events are ordered to produce an ini-
tial set of traces denoted Traces(Sua). Figure 3 illustrates
this set obtained from the events of Figure 2.

In the context of Michelin, we use four inference rules to
remove all irrelevant events. Two of them are related to
the logging system itself, the two others are used to remove
events that have no business meaning, and have been given
by Michelin experts.

3.2.2 Traces segmentation
We define a complete trace as a trace containing all events
expressing the path taken by a product in a production sys-
tem, from the beginning, i.e. one of its entry points, to the
end, i.e. one of its exit points. In the trace set Traces(Sua),
we do not want to keep incomplete traces, i.e. traces related
to products which did not pass through one of the known

entry points or moved to the next step of the manufacturing
process using one of the known exit points.

We chose to split Traces(Sua) constructed in the previous
step into subsets STi, one for each entry point of the sys-
tem under analysis Sua. Later, every trace set STi shall
give birth to one model, describing all possible behaviours
starting from its corresponding entry point.

In Michelin systems, the parameter point stores the product
physical location and can be used to deduce the entry and
exit points of the systems. We perform a statistical analysis
on Traces(Sua) and compute two ratios for each assignment
(point := val) found in the first and last valued events of
every trace. If Traces(Sua) is sufficiently large (traces col-
lected during more than a week at Michelin), these ratios
directly show the entry and exit points, respectively stored
into the sets POINTinit and POINTfinal. Otherwise, we
assume that the number of entry and exit points, N and
M , are given and we keep only the first N and M points
having the highest ratios. Then, for each entry point, we
construct a trace set denoted STi made of traces express-
ing behaviours starting at this entry point and ending at
one of the exit points of POINTfinal. The other traces
are ignored. We obtain the set ST = {ST1, ..., STN} with
N the number of entry points of the system Sua. Finally,
these traces are scrutinised to detect repetitive valued event
sequences in order to remove them.

In our straightforward example, we obtain one trace set
ST1 = Traces(Sua).

3.2.3 STS generation
One model is built for each trace set STi in ST . Given a set
STi, a first STS, denoted Si, is built in a simple but quick
manner. Each trace of STi is completed to derive a set of
runs. A run is an alternate sequence of states and events.
Given a trace t in STi, states, which are unique, are injected
before and after each event of t. States must be unique to
keep the ordering of the events in the runs, and to prevent
merging different behaviours in the model. The initial state
is an exception though as it is shared by all the runs. The
model Si is obtained by transforming runs into sequences of
transitions that are then joined together. We obtain a model
having a tree structure and whose traces are equivalent to
those of STi. At this point, production events are called
actions in the STS.

Figure 4 depicts the model obtained from the traces given
in Figure 3. Every initial trace is now represented as a
STS branch. Parameter assignments are modelled with con-
straints over transitions, called guards. The details about
the STS models are given in Section 4.

3.2.4 STS reduction
A model Si constructed with the above steps is usually too
large, and thus cannot be beneficial as is. Using such a
model for testing purpose would lead to too many test cases
for instance. That is why our framework adds a reduction
step, aiming at diminishing the first model into a second one,
denoted R(Si) that will be more usable. Most of the existing
approaches propose two solutions. Models can directly be

Figure 4: First generated model (STS)

Figure 5: Reduced model (STS)

inferred with high levels of abstraction but these are also ap-
proximate, i.e. models express more behaviours than those
concretely observed. This approach is not suitable since we
do not want to infer extrapolated models. The second so-
lution is to apply a minimisation technique [1] which guar-
antees trace equivalence. Nonetheless, after investigation,
we concluded that minimisation is costly and highly time
consuming on large models.

As a result, we chose to apply a simpler approach which
consists in combining STS branches that have the same se-
quences of actions so that we still obtain a model having a
tree structure. When branches are combined together, pa-
rameter assignments are wrapped into matrices in such a
way that trace equivalence between the first model and the
new one is preserved. The use of matrices offers here an-
other advantage: the parameter assignments are now packed
into a structure that can be more easily analysed later. As
described in Section 5, this straightforward approach gives
good results in terms of STS reduction and requires low pro-
cessing time, even with millions of transitions.

Figure 5 depicts the reduced model obtained from the STS
of Figure 4. Now we have only one branch where guards are
packed into one matrix M[b].

3.2.5 Model generation for comprehension aid
For every trace set STi, we have built a model R(Si) whose
size has been drastically reduced. Such a model can be used
for testing purpose, which is one of Michelin’s goals, but
it can also be lifted in abstraction to create more readable
models. These could be used for diagnosis when issues are
experienced in production.

Figure 6: Final model (STS)

To infer more abstract models, we focus once again on the
notion of expert knowledge. The reasoning that an expert
can apply while reading events are formalised into inference
rules. The latters aim at analysing the behaviours captured
by a model R(Si) to produce another model denoted S↑i hav-
ing a higher level of abstraction. In this paper, we consider
two kinds of inference rules:

• the inference rules that are used to enrich the meaning
of the STS actions, e.g. by replacing some labels with
more comprehensive ones. These rules are initially ap-
plied on the model R(Si),

• we consider a second set of inference rules to analyse
the meaning of sequences of transitions and to aggre-
gate such sequences into a single transition.

If we take back our example, we obtain a last model de-
picted in Figure 6. The initial actions are replaced with
more comprehensive ones (Figure 6(a)) by means of two in-
ference rules. Then, the two actions expressing a moving
request of a product and a response are aggregated into the
action labelled as Product Advance (Figure 6(b)). We obtain
a STS made of a unique transition whereas we had 5 pro-
duction events at the beginning. Such models are easier to
read and understand, but also seem to be more convenient
to diagnose issues.

By writing 20 rules to enrich the meaning of the actions
for our case study with Michelin, we were able to generate
a model that Michelin experts understood. We then wrote
6 more rules to aggregate sequences of transitions in order
to generate reduced models, mimicking some of the existing
Michelin specifications.

3.3 Limitations
This framework can be applied to any kind of industrial
system that meets the above assumptions. Nonetheless, it
is manifest that a prelimiary evaluation on the system has
to be done to establish:

1. how to parse production events,

2. the rules for event filtering,

3. the entry and exit point numbers if the production
event set is not sufficient to deduce them automatically
with a statistical analysis,

4. the name of the identifier parameter in production
events,

5. (optional) the rules for improving the model level of
abstraction. These rules may be deduced from docu-
mentation or human experts but this step may be as
difficult and long as writing a model.

At the moment, the implementation of Autofunk does not
yet support a continuous incoming flow of production events
to incrementally build a model (this is not the priority of
Michelin). Nevertheless, the theoretical aspects of our ap-
proach have been designed to enable this feature in the fu-
ture.

4. INFERENCE-BASED MODEL GENERA-
TION FRAMEWORK

In this section, we describe more formally the different steps
illustrated in Figure 1. As stated in the overview, Autofunk
is conceived upon the notion of expert system adopting a for-
ward chaining. Such a system separates the knowledge base,
a.k.a. facts, from the reasoning: the former is expressed with
data and the latter is defined with inference rules that are
applied on the facts. All information handled by Autofunk
(events, traces, models, etc.) are then modelled with bases
of facts. Autofunk relies upon two kinds of inference rules
to infer STSs. On the one hand, we have rules based upon
the STS formalism, and on the other hand, we have rules
expressing expert knowledge. Now, it is evident that model
inference execution has to be done in a finite time and in
a deterministic way. To reach that goal, we assume that
inference rules used by our framework meet the following
hypotheses:

1. (finite complexity): a rule can only be applied a limited
number of times on the same facts,

2. (soundness): inference rules are Modus Ponens (simple
implications that lead to sound facts if the original
facts are true).

4.1 Symbolic Transition Systems
Our model of choice for modelling Michelin systems is the
Symbolic Transition System (STS). This model is known
as a very general and powerful model for describing sev-
eral aspects of event-based systems. The use of symbolic
variables helps describe infinite state machines in a finite
manner. This potentially infinite behaviour is represented
by the semantics of a STS, given in terms of Labelled Transi-
tion System (LTS). STS operations and transformations are
often given with inference rules. This aspect helps combine
the two areas we consider in this paper: formal models and
expert systems. We briefly give some definitions related to
the STS model below, but we refer to [7] for a more detailed
description.

Definition 1 (Variable assignment) We assume that
there exist a domain of values denoted D and a variable set
X taking values in D. The assignment of variables in Y ⊆ X
to elements of D is denoted with a mapping α : Y → D.
We denote DY the assignment set over Y . We also denote

idY the identity assignment over Y , and v∅ the empty as-
signment.

Definition 2 (STS) A Symbolic Transition System (STS)
is a tuple < L, l0, V, V0, I,Λ, →>, where:

• STSs do not have states but locations and L is the finite
location set, with l0 being the initial one,

• V is the finite set of internal variables, while I is the
finite set of parameters. The internal variables are ini-
tialised with the condition V0 on V ,

• Λ is the finite set of symbolic events a(p), with p =
(p1, ..., pk) a finite set of parameters in Ik(k ∈ N),

• → is the finite transition set. A transition (li, lj , a(p)
, G,A), from the location li ∈ L to lj ∈ L, also denoted

li
a(p),G,A−−−−−−→ lj is labelled by:

– an action a(p) ∈ Λ,

– G is a guard over (p∪V ∪T (p∪V)) which restricts
the firing of the transition. T (p ∪ V) are boolean
terms, a.k.a. predicates over p ∪ V ,

– internal variables are updated with the assignment
function A of the form (x := Ax)x∈V , Ax is an
expression over V ∪ p ∪ T (p ∪ V).

For readability purpose, we also use the generalised transi-
tion relation ⇒ to represent STS paths:

l
(a1,G1,A1)...(an,Gn,An)
================⇒ l′ =def ∃l0, ...ln, l = l0

a1,G1,A1−−−−−−→
l1...ln−1

an,Gn,An−−−−−−−→ ln = l′.

A STS is also associated with a LTS (Labelled Transition
System) to formulate its semantics. The LTS semantics
corresponds to a valued automaton without any symbolic
variables, which is often infinite: the LTS states are la-
belled by internal variable assignments, and transitions are
labelled by actions associated with parameter assignments.
The semantics of a STS S =< L, l0, V, V0, I,Λ,→> is the
LTS ||S|| =< Q, q0,

∑
,→> composed of valued states in

Q = L×DV , q0 = (l0, V0) is the initial one,
∑

is the set of
valued actions, and → is the transition relation.

Intuitively, for a STS transition l1
a(p),G,A−−−−−−→ l2, we obtain

a LTS transition (l1, v)
a(p),α−−−−→ (l2, v

′) with v an assignment
over the internal variable set if there exists a parameter value
set α such that the guard G evaluates to true with v ∪ α.
Once the transition is fired, the internal variables are as-
signed with v′ derived from the assignment A(v ∪ α).

Finally, runs and traces, which represent executions and
event sequences, can also be derived from LTS semantics:

Definition 3 (Runs and traces) Given a STS S = < L,
l0, V, V0, I,Λ,→>, interpreted by its LTS semantics ||S|| =<
Q, q0,

∑
,→>, a run q0α0...αn−1qn is an alternate sequence

of states and valued actions. Run(S) = Run(||S||) is the set
of runs found in ||S||.

1 r u l e ”Remove INFO events ”
2 when :
3 $a : ValuedEvent (assignment . valueOf (”type ”)

== TYPE INFO)
4 then
5 r e t r a c t ($a)
6 end
7

8 r u l e ”Remove events that are repeated ”
9 when

10 $a : ValuedEvent (
11 assignment . valueOf (”key ”) matches ”

KEY NAME [0−9]+”,
12 assignment . valueOf (” inc ”) != nul l ,
13 assignment . valueOf (” inc ”) != ”1”
14)
15 then
16 r e t r a c t ($a)
17 end

Figure 7: Inference rules example for filtering

A trace of a run r is defined as the projection proj∑(r) on
the actions.

We consider this theoretical background in a backward man-
ner to infer models from trace sets. These are collected from
running production systems, then filtered out, and trans-
formed into runs. From these, we construct STSs that are
reduced and built over assignments compound of matrices
of guards.

In the following, we describe Autofunk ’s modules.

4.2 Production events and traces
Production events are collected, filtered, and formatted into
traces (Figure 1). To avoid disrupting the (running) sys-
tem under analysis Sua, we do not instrument the indus-
trial equipments composing the whole system. Everything
is done offline with a logging system or with monitoring.

As stated in the framework overview, production events are
formatted into a base of valued events of the form a(α) with
a a label and α a parameter assignment. Right after, the
valued event base is filtered. These steps are performed with
inference rules of the form: When a(α), condition on a(α),
Then retract(a(α)).

Figure 7 shows two concrete rules applied on Michelin sys-
tems. These two rules are written with the Drools 1 formal-
ism. Drools is a rule-based expert system where knowledge
bases are expressed with Java objects. The first rule removes
valued events including the INFO parameter which do not
contain any business value. The second rule removes valued
events extracted from very specific events, i.e. those whose
key matches a pattern and having a inc value that is not
equal to 1. This rule, given by a Michelin expert, removes
some duplicate events.

From this filtered valued event base, we reconstruct the cor-
responding traces from the trace identifier pid, present in
each valued event, and timestamps. We call the resulting
trace set Traces(Sua):

1http://www.drools.org/

Definition 4 (Traces(Sua)) Given a system under analy-
sis Sua, Traces(Sua) denotes its formatted trace set.
Traces(Sua) includes traces of the form (a1, α1)....(an, αn)
such that (ai, αi)(1≤i≤n) are (ordered) valued events having
the same identifier assignment.

We can now state that a STS model S is said exact iff.
Traces(S) ⊆ Traces(Sua).

Algorithm 1: Trace segmentation algorithm

input : Traces(Sua), optionally entry point number N
and/or exit point number M

output: ST = {ST1, ..., STn}
1 Step 1. Traces(Sua) segmentation
2 foreach t = (a1, α1)...(an, αn) ∈ Traces(Sua) do
3 Rinit((point := val) ⊂ α1) + +;
4 Rfinal((point := val2) ⊂ αn) + +;

5 POINTinit = {(point := val) | Rinit((point := val)) >
10% or belongs to the N highest ratios};

6 POINTfinal = {(point := val) | Rfinal((point := val)) >
10% or belongs to the M highest ratios};

7 foreach αi = (point := val) ∈ POINTinit do
8 STi = {a1(α1)...an(αn) ∈ Traces(Sua) | αi ⊂

α1, ∃(point := val2) ⊂ αn, (point := val2) ∈
POINTfinal};

9 ST := {ST1, ..., STN};
10 Step 2. trace filtering
11 foreach t = σ1p...pσn ∈ ST do
12 if ∃t′ = σ′1p

′σ′n ∈ ST such that p ∼(pid) p
′,

σ1 ∼(pid) σ
′
1, σn ∼(pid) σ

′
n then

13 ST := ST/{t};

4.3 Trace segmentation and filtering
This module performs two steps which are summarised in
Algorithm 1. It starts by splitting Traces(Sua) into several
trace sets STi, one for each entry point of the system Sua,
and then removes incomplete traces. Since we want a frame-
work as flexible as possible, we chose to perform a statistical
analysis on Traces(Sua) aiming at automatically detecting
the entry and exit points. This analysis is performed on the
assignments (point := val) found in the first and last valued
events of the traces of Traces(Sua) since point captures the
product physical location and especially the entry and exit
points of Sua. We obtain two ratios Rinit(point := val)
and Rfinal(point := val). Based on these ratios, one can
deduce the entry point set POINTinit and the exit point
set POINTfinal if Traces(Sua) is large enough. Pragmati-
cally, we observed that the traces collected during one or two
days are not sufficient because they do not provide enough
differences between the ratios. In this case, we assume that
the number of entry and exit points, N and M , are given
and we keep the first N and M ratios only. On the other
hand, a week seems to offer good results. We chose to set
a fixed yet configurable minimum limit to 10%. Assigne-
ments (point := val) having a ratio below this limit are not
retained. Then, for each assignment αi = (point := val)

in POINTinit, we construct a trace set STi such that a
trace of STi has a first valued event including the assign-
ment αi, and ends with a valued event including an assign-
ment (point := val2) in POINTfinal. We obtain the set
ST = {ST1, ..., STN} with N the number of entry points of
the system Sua.

Thereafter, Autofunk scans the traces in ST and tries to de-
tect repetitive patterns p, ..., p. If it finds a trace t having a
repetitive pattern p and another equivalent trace including
this pattern p once, then t is removed since we suppose that
t does not express a new and interesting behaviour. Here,
traces are removed rather than deleting the repetitive pat-
terns to prevent from modifying traces and to keep the trace
inclusion property between the sets STi and Traces(Sua).
In Algorithm 1, two traces t = σ1p, ..., pσn and t′ = σ1p

′σn
are said equivalent if the patterns p, p′ and the sub-sequences
are equivalent, denoted with the ∼(pid) notation. Intuitively,
this relation means that the two equivalent sequences must
have the same successive valued events after having removed
the assignments of the variable pid.

We obtain a set ST = {ST1, ..., STN} according to the fol-
lowing proposition:

Proposition 5 Let ST =
⋃

1≤i≤N STi be the trace set ob-

tained from Sua. We have Traces(STi) ⊆ Traces(Sua).

4.4 STS generation
Given a trace set STi ∈ ST , the STS generation is incre-
mentally done by transforming traces into runs, and runs
into STSs. The translation of STi into a run set denoted
Runsi is done by completing traces with states. Each run
starts by the same initial state (l0, v∅) with v∅ the empty
assignment. Then, new states are injected after each event.
Runsi is formally given by the following definition:

Definition 6 (Structured Runs) Let STi be a trace set
obtained from Sua. We denote Runsi the set of runs derived
from STi with the following inference rule:

σk(1≤k≤n)=(a1,α1)...(an,αn)∈STi

(l0,v∅)(a1,α1)(lk1,v∅)...(lkn−1,v∅)(an,αn)(lkn,v∅)∈Runsi

The above definition preserves trace inclusion betweenRunsi
and Traces(Sua), and we can deduce the following propo-
sition:

Proposition 7 Let STi be a trace set obtained from Sua.
We have Traces(Runsi) ⊆ Traces(Sua).

The runs of Runsi have states that are unique except for
the initial state (l0, v∅). We defined such a set to ease the
process of building a STS having a tree structure. Runs
are transformed into STS paths that are assembled together
by means of a disjoint union. The resulting STS forms a
tree compound of branches starting from the location l0.
Parameters and guards are extracted from the assignments
found in valued events:

Definition 8 Given a run set Runsi, Si =< LSi , l0Si , VSi ,
V 0Si , ISi ,ΛSi ,→Si> is the STS expressing the behaviours
found in Runsi such that:

• LSi = {li | ∃r ∈ Runsi, (li, v∅) is a state found in r},

• l0Si = l0 is the initial location such that ∀r ∈ Runsi,
r starts with (l0, v∅),

• VSi = ∅, V 0Si = v∅,

• →Si and ΛSi are defined by the following inference rule
applied on every element r ∈ Runsi:

(li,v∅)(ai,αi)(li+1,v∅)∈r,p={x|(x:=v)∈αi},Gi=

∧
(x:=v)∈αi

x == v

li
ai(p),Gi,idV−−−−−−−−→Si

li+1

Now, we have a first STS that has a tree form, describing
all behaviours of the system under analysis.

Figure 4 illustrates the STS S1 obtained from the produc-
tion events of Figure 2. We have STS actions and each one
owns a parameter list. Transitions are labelled with guards
derived from parameter assignments. This STS expresses
the behaviours found in Traces(Sua) but in a slightly dif-
ferent manner. More generally, trace inclusion between an
inferred STS and Traces(Sua) is captured by the following
proposition:

Proposition 9 Let Sua be a system under analysis and
Traces(Sua) be its trace set. Si is an inferred STS from
Traces(Sua).
We have Traces(Si) = Traces(STi) ⊆ Traces(Sua).

4.5 STS reduction
A STS Si is most likely too large for being analysed in an ef-
ficient manner. Given that a production system has a finite
number of elements and that there should only be determin-
istic decisions, the STS Si should contain branches capturing
the same sequences of events (without necessarily the same
parameter assignments). Consequently, it sounds natural to
try to reduce the STS obtained from the previous step.

Because our goal is to produce exact models quickly, we
propose to apply a lightweight STS reduction method which
also aims at gathering data in order to ease the data anal-
ysis later on. Our method merges complete branches that
have the same action sequences whereas guards, which cap-
ture parameter assignments, are merged into matrices. More
precisely, a sequence of successive guards found in a branch
is stored into a matrix column. By doing this, we reduce the
model size and we can still retrieve original behaviours and
only these ones. We still preserve trace inclusion between
the reduced STS and Traces(Sua).

Given a STS Si, every STS branch is initially adapted to
express sequences of guards in a vector form to ease the
STS reduction. Later, the concatenation of these vectors
shall give birth to matrices. This adaptation is obtained
with the definition of the STS operator Mat:

Definition 10 Let Si =< LSi , l0Si , VSi , V 0Si , ISi ,ΛSi ,→Si>
be a STS. We denote Mat(Si) the STS operator which con-
sists in expressing guards of STS branches in a vector form.

Mat(Si) =< LMat(Si), l0Mat(Si), VMat(Si), V 0Mat(Si), IMat(Si)

,ΛMat(Si), →Mat(Si)> where:

• LMat(Si) = LSi , l0Mat(Si) = l0Si , IMat(Si) = ISi ,
ΛMat(Si) = ΛSi ,

• VMat(Si), V 0Mat(Si) and→Mat(Si) are given by the fol-
lowing rule:

bi=l0
(a1(p1),G1,A1)...(an(pn),Gn,An)

=====================⇒ln

V 0Mat(Si) := V 0Mat(Si) ∧Mi = [G1, ..., Gn]

l0Mat(Si)
(a1(p1),Mi[1],idV)...(an(pn),Mi[n],idV)
==========================⇒→Mat(Si)

ln

Given a branch bi ∈ (→Mat(Si))
n, we also denote Mat(bi) =

M the vector used with bi.

Now, we are ready to merge the STS branches that have
the same sequences of actions. This last sentence can be
interpreted as an equivalence relation over STS branches
from which we can derive equivalence classes:

Definition 11 (STS branch equivalence class) Let Si
=< LSi , l0Si , VSi , V 0Si , ISi ,ΛSi , →Si> be a STS obtained
from Traces(Sua) (and having a tree structure). [b] denotes
the equivalence class of Si branches such that:

[b] = {bj = l0Si

(a1(p1),G1j ,A1j)...(an(pn),Gnj ,Anj)
========================⇒ lnj(j ≥

1) | b = l0Si

(a1(p1),G1,A1)...(an(pn),Gn,An)
=====================⇒ ln}

The reduced STS denoted R(Si) of Si is obtained by concate-
nating all the branches of each equivalence class [b] found in
Mat(Si) into one branch. The vectors found in the branches
of [b] are concatenated as well into the same unique matrix
M[b]. A column of this matrix represents a complete and
ordered sequence of guards found in one initial branch of Si.
R(Si) is defined as follow:

Definition 12 Let Si =< LSi , l0Si , VSi , V 0Si , ISi ,ΛSi ,→Si>
be a STS inferred from a structured trace set Traces(Sua).
The reduction of Si is modelled by the STS R(Si) =< LR, l0R,
VR, V 0R, IR,ΛR, →R> where:

[b] = {b1, ..., bm}
b = l0Si

(a1(p1),G1,A1)...(an(pn),Gn,An)
=====================⇒Mat(Si) ln

V 0R := V 0R ∧M[b] = [Mat(b1), ...,Mat(bm)]
∧(1 ≤ c[b] ≤ m),

l0R
(a1(p1),M[b][1,c[b]],idV)...(an(pn),M[b][n,c[b]],idV)
=================================⇒→R

(ln1...lnm)

The resulting model R(Si) is a STS composed of variables
assigned to matrices whose values are used as guards. A
matrix column represents a successive list of guards found

in a branch of the initial STS Si. The choice of the column
in a matrix depends on a new variable c[b].

Figure 4 has two branches that can be combined since they
have the same action sequences. During the construction of
the reduced STS depicted in Figure 6, the guards are placed
into two vectors M1 = [G1 G2] and M2 = [G3 G3]. These
are combined into the same matrix M[b]. The variable c[b]
is used to take either the guards of the first column or the
guards of the second one.

The STS R(Si) has less branches but still expresses the ini-
tial behaviours described by the STS Si. This is captured
with the following proposition:

Proposition 13 Let Sua be a system under analysis and
Traces(Sua) be its traces set. R(Si) is a STS derived from
Traces(Sua). We have Traces(R(Si)) = Traces(STi) ⊆
Traces(Sua).

4.6 STS abstraction
Given the trace set STi ∈ ST , the generated STS R(Si) can
be used for analysis purpose but is still difficult to manu-
ally interpret, even for experts. This Autofunk module aims
to analyse R(Si) to produce a new STS S

↑
i whose level of

abstraction is lifted by using more intelligible actions. This
process is performed with inference rules, which encode the
knowledge of the expert of the system. These are triggered
on the transitions of R(Si) to deduce new transitions. We
consider two types of rules:

• the rules replacing some transitions by more compre-
hensive ones. These rules are of the form: When

Transition l1
a(p),G,A−−−−−−→R(Si) l2, condition on a(p), G,A,

Then add l1
a′(p′),G′,A′−−−−−−−−→

S
↑
i
l2 and retract l1

a(p),G,A−−−−−−→R(Si)

l2.

• the rules that aggregate some successive transitions to
a single transition compound of a more abstract ac-
tion. These rules are of the form When Transition

l1
(a1,G1,A1),...(an,Gn,An)
================⇒ ln, condition on

(a1, G1, A1), ...(an, Gn, An), Then add l1
a(p),G,A−−−−−−→

S
↑
i

ln, and retract l1
(a1,G1,A1),...(an,Gn,An)
================⇒ ln.

The generated STSs represent recorded scenarios modelled
at a higher level of abstraction. These can be particularly
useful for generating documentation or better understanding
how the system behaves, especially when issues are experi-
enced in production. However, it is manifest that the trace
inclusion property is lost with the STSs constructed by this
module since sequences are modified.

If we take back our example, the actions of the STS of Fig-
ure 5 are replaced with the rules of Figure 8 which change
the labels 17011 and 17021 to more intelligible ones. The
third rule of Figure 9 aggregates the two transitions into
a unique transition indicating the movement of a product
in its production line. These rules are also written using
the Drools formalism. Here, Transition are facts modelling

1 r u l e ”Mark de s t i n a t i on r eque s t s ”
2 when :
3 $t : Trans i t i on (name matches ”17011”)
4 then
5 $t . changeAction (”Dest inat ion Request ”)
6 end
7

8 r u l e ”Mark de s t i n a t i on re sponse s ”
9 when :

10 $t : Trans i t i on (name matches ”17021”)
11 then
12 $t . changeAction (”Dest inat ion Response ”)
13 end

Figure 8: Two rules adding value to existing transitions

1 r u l e ”Aggregate d e s t i n a t i on r eque s t s / r e sponse s ”
2 when
3 $t1 : Trans i t i on (ac t i on == ”Dest inat ion Request

” , $ l f i n a l := L f i n a l)
4 $t2 : Trans i t i on (ac t i on == ”Dest inat ion

Response ” , L i n i t == $ l f i n a l)
5 then
6 i n s e r t (new Trans i t i on (”Product Advance ” , Guard

($t1 . Guard , $t2 . Guard) , Assign ($t1 . Assign
, $t2 . Assign) , $t1 . L in i t , $t2 . L f i n a l))

7 r e t r a c t ($t1)
8 r e t r a c t ($t2)
9 end

Figure 9: STS transition aggregation rule

STS transitions. From 5 initial production events that are
not self-explanatory, we generate a simpler STS constituted
of one transition, clearly expressing a part of the functioning
of the system.

5. IMPLEMENTATION AND EXPERIMEN-
TATION

In this section, we briefly describe the implementation of our
model inference framework for Michelin. Then, we give an
evaluation on a real production system.

5.1 Implementation
Our framework Autofunk is developed in Java and mainly
based on Drools 2, a Java rule-based expert system engine.
Drools supports knowledge bases with facts given as Java
objects. In our context, we have several bases of facts used
throughout the different Autofunk modules: Events, Trace
sets STi, Runs, Transitions and STSs. We chose to target
performance and simplicity while implementing Autofunk.
That is why most of the steps are implemented with parallel
algorithms (except the production event parsing) which are
based upon the inference rules given in Section 4.

The input trace collection is constructed with a classical
parser with returns Event Java objects. By now, we are
not able to parallelise this part because of an issue we faced
with Michelin’s logging system. The resulting drawback is
that the time to parse traces is longer than expected and
heavily depends on the size of data to parse. The Event
base is then filtered with Drools inference rules as presented
in Section 4.2. Then, we call a straightforward algorithm
for reconstructing traces: it iterates over the Event base

2http://www.drools.org/

and creates a set for each assignment of the identifier pid.
These sets are sorted to construct traces given as Trace
Java objects. These objects correspond to Traces(Sua).
The generation of the trace subsets ST = {ST1, ..., STN}
and of the first STSs are done with Drools inference rules
as described in Section 4, but applied in parallel. The STS
reduction, and specifically the generation of STS branches
equivalence classes, has been implemented with a specific
algorithm for better performance. Indeed, comparing every
action in STS branches in order to aggregate them is time
consuming. Given a STS S, this algorithm generates a sig-
nature for each branch b, i.e. a hash (SHA1 algorithm) of
the concatenation of the signatures of the actions of b. The
branches which have the same signature are gathered to-
gether and establish branch equivalence classes (as described
in Section 4.5). Thereafter, the reduced R(S) is constructed
thanks to the inference rule given in Section 4.5.

5.2 Evaluation
We conducted several experiments with real sets of produc-
tion events, recorded in one of Michelin’s factories at dif-
ferent periods of time. We executed our implementation on
a Linux (Debian) machine with 12 Intel(R) Xeon(R) CPU
X5660 @ 2.8GHz and 64GB RAM.

We present here the results of 6 experiments on the same
production system with different event sets collected during
1, 8, 11, 20, and 23 days. These results are depicted in Figure
10. For confidentiality reasons, we are not able to provide
results related to the generation of more abstract models.
The third column gives the number of production events
recorded on the system. The next column shows the trace
number obtained after the parsing step. N and M represent
the entry and exit points automatically computed with the
statistical analysis. The column Trace Subsets shows how
Traces(Sua) is segmented into subsets {ST1, ..., STN} and
the number of traces included in each subset. These num-
bers of traces also correspond to the numbers of branches
generated in the STSs S1, ..., SN . The eighth column, #
R(Si), represents the number of branches found in each re-
duced STSs R(S1), ..., R(SN). Finally, execution times are
rounded and expressed in minutes in the last column.

First, these results show that our framework can take mil-
lions of production events and still builds models quickly
(less than half an hour). With sets collected during one
day up to one week (experiments A, B, C, and D), models
are inferred in less than 10 minutes. Hence, Autofunk can
be used to quickly infer models for analysis purpose or to
help diagnose faults in a system. Experiment F handled al-
most 10 million events in less than half an hour to build two
models including around 1,600 branches. As mentioned in
Section 5.1, the parsing process is not parallelized yet, and
it took up to 20 minutes to open and parse around 1,000 files
(number of Michelin log files for this experiment). This is an
issue we want to tackle in the next version of Autofunk. The
graph shown in Figure 13 summarises the performances of
our framework and how fast it is at transforming production
events into models (experiments B, C and D run in about 9
minutes). It also demonstrates that doubling the event set
does not involve doubling its execution time. The exponen-
tial trend line reveals that the overall framework scales well,
even with the current parsing implementation.

Exp. # Days # Events Card(Traces(Sua)) N M # Trace Subsets # R(Si) Exec Time (min)

A1 1 660,431 16,602 2 3 4,822 332 1
A2 1,310 193
B1 8 3,952,906 66,880 3 3 28,555 914 9
B2 18,900 788
B3 6,681 51
C1 11 3,615,215 61,125 3 3 28,302 889 9
C2 14,605 681
C2 7,824 80
D1 11 3,851,264 73,364 2 3 35,541 924 9
D2 17,402 837
E1 20 7,635,494 134,908 2 3 61,795 1,441 16
E2 35,799 1,401
F1 23 9,231,160 161,035 2 3 77,058 1,587 24
F2 43,536 1,585

Figure 10: Results of 6 experiments on a Michelin industrial system

In Figure 10, the difference between the number of trace
subsets (7th column) and the number of branches included
in the STSs R(Si) (8th column) clearly shows that our STS
reduction approach is effective. For instance, with experi-
ment B, we reduce the STSs by 91.88% against the initial
trace set Traces(Sua). In other words, 91% of the original
behaviours are packed into matrices.

We also extracted the values of columns 4 and 7 in Figure
10 to depict the stacked bar chart illustrated in Figure 11.
This chart shows, for each experiment, the proportion of
complete traces kept by Autofunk to build models, over the
initial number of traces in Traces(Sua). Autofunk has kept
only 37% of the initial traces in Experiment A because its
initial trace set is too small and contains many incomplete
behaviours. During a day, most of the recorded traces do not
start or end at entry or exit points, but rather start or end
somewhere in production lines. Indeed, a workshop contains
storage areas where products can stay for a while, depending
on the production campaigns or needs for instance. That is
why, on a single day, we can find so many incomplete traces.
With more production events, such a phenomenon is limited
because we absorb these storage delays.
We can also notice that experiments C and D have simi-
lar initial trace sets but experiment C owns more complete
traces than experiment D by 12%, which is significant. Fur-
thermore, experiments B and C take 3 entry points into ac-
count while the others only take 2 of them. This is related to
the fixed limit of 10% we chose to ensure truly entry points to
be automatically selected. The workshop we analysed has
three entry points whose two are mainly used. The third
entry point is employed to equilibrate the production load
between this workshop and a second one located close to it
in the same factory. Depending on the period, this entry
point may be more or less sollicitated, hence the difference
between experiments B, C and experiment D. Increasing
the limit of 10% to a higher value would change the value
of N for experiments B and C, but would also impact ex-
periment A by introducing false results since incorrect entry
points could be selected. By means of a manual analysis, we
concluded that 10% was the best ratio for removing incom-
plete traces in our experiments. 30% of initial traces have
been removed, which is close to the reality. However, this

Figure 11: Proportions of complete traces

simple analysis could be improved in the future.

Another potential issue with our parsing implementation
is that every event has to be loaded in memory, so that
we can perform computation and apply our algorithms on
them. However working with millions of Java objects re-
quires enough memory, i.e. memory consumption depends
on the amount of initial traces. We compared execution
time and memory consumption in Figure 12, showing that
memory consumption tends to follow a logarithmic trend.
In the next version of Autofunk, we plan to work on im-
proving memory consumption even if it has been considered
acceptable as is by Michelin.

6. CONCLUSION
This paper presents Autofunk, a fast and scalable framework
combining model inference and expert systems to generate
models from production systems. Given a large set of pro-
duction events, our framework infers exacts models whose
traces are included in the initial trace set of a system un-
der analysis. We chose to design Autofunk for targeting
high performance. Our evaluation shows that this approach
is suitable in the context of production systems since we
quickly obtain STS trees reduced by 90% against the origi-

Figure 12: Memory consumption vs execution time

Figure 13: Execution time vs events

nal trace sets of the system under analysis.

Nevertheless, many aspects need to be investigated and im-
proved in the future. From a technical perspective, our im-
plementation should be enhanced to speed up the event pars-
ing, for instance by considering a message queuing protocol,
and to optimize memory consumption. Our STS reduction
approach could also be improved by concatenating partial
equivalent STS branches. However, a naive solution would
affect performance as partial branch concatenation is time
consuming, and we do not want to sacrifice execution speed.
We also plan to use this framework to propose a new test-
ing approach taking advantage of the inferred models. In
short, inferred models could be used to generate event-based
scenarios to test production systems, and an improved ver-
sion of Autofunk could check the compliance of the recorded
event sets against inferred models.

7. REFERENCES
[1] P. A. Abdulla, L. Kaati, and J. Hogberg. Bisimulation

minimization of tree automata. Technical report, In
Proc. 11th Int. Conf. Implementation and Application
of Automata, volume 4094 of LNCS, 2006.

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D.
Ta, and A. M. Memon. Mobiguitar – a tool for
automated model-based testing of mobile apps. IEEE
Software, NN(N):NN–NN, 2014.

[3] S. Anand, M. Naik, M. J. Harrold, and H. Yang.
Automated concolic testing of smartphone apps. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, FSE ’12, pages 59:1–59:11, New York,

NY, USA, 2012. ACM.

[4] D. Angluin. Learning regular sets from queries and
counterexamples. Information and Computation,
75(2):87 – 106, 1987.

[5] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig,
A. Paradkar, and M. Ernst. Finding bugs in web
applications using dynamic test generation and
explicit-state model checking. Software Engineering,
IEEE Transactions on, 36(4):474–494, 2010.

[6] W. Choi, G. Necula, and K. Sen. Guided gui testing of
android apps with minimal restart and approximate
learning. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented
Programming Systems Languages & Applications,
OOPSLA ’13, pages 623–640, New York, NY, USA,
2013. ACM.

[7] L. Frantzen, J. Tretmans, and T. Willemse. Test
Generation Based on Symbolic Specifications. In
J. Grabowski and B. Nielsen, editors, FATES 2004,
number 3395 in Lecture Notes in Computer Science,
pages 1–15. Springer, 2005.

[8] H. Hungar, T. Margaria, and B. Steffen. Model
generation for legacy systems. In M. Wirsing,
A. Knapp, and S. Balsamo, editors, Radical
Innovations of Software and Systems Engineering in
the Future, 9th International Workshop, RISSEF
2002, Venice, Italy, October 7-11, 2002, Revised
Papers, volume 2941 of Lecture Notes in Computer
Science, pages 167–183. Springer, 2002.

[9] A. Memon, I. Banerjee, and A. Nagarajan. Gui
ripping: Reverse engineering of graphical user
interfaces for testing. In Proceedings of the 10th
Working Conference on Reverse Engineering, WCRE
’03, pages 260–, Washington, DC, USA, 2003. IEEE
Computer Society.

[10] A. Mesbah, A. van Deursen, and S. Lenselink.
Crawling Ajax-based web applications through
dynamic analysis of user interface state changes. ACM
Transactions on the Web (TWEB), 6(1):3:1–3:30,
2012.

[11] M. Pradel and T. R. Gross. Automatic generation of
object usage specifications from large method traces.
In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, ASE
’09, pages 371–382, Washington, DC, USA, 2009.
IEEE Computer Society.

[12] M. Salah, T. Denton, S. Mancoridis, and A. Shokouf.
Scenariographer: A tool for reverse engineering class
usage scenarios from method invocation sequences. In
In ICSM, pages 155–164. IEEE Computer Society,
2005.

[13] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring
specifications for resources from natural language api
documentation. Autom. Softw. Eng., 18(3-4):227–261,
2011.

